Bernoulli Likelihood (Logistic Link)
The BernoulliLikelihood
with a logistic link $\sigma$ is defined as
\[ p(y|f) = \operatorname{Bernoulli}(y|\sigma(f)).\]
In other terms we have that $p(y=1|f) = \sigma(yf) = \frac{\exp\left(\frac{yf}{2}\right)}{2\cosh\left(\frac{yf}{2}\right)}$, where we set $y\in\{-1,1\}$.
The augmentation
We can rewrite the sigmoid function as:
\[ \sigma(yf) = \frac{1}{2}\int_0^\infty \exp\left(\frac{yf}{2}-\frac{yf^2}{2}\omega\right)\operatorname{PG}(\omega|1,0)d\omega,\]
where $\operatorname{PG}(\omega|1,0)$ is the Polya-Gamma distribution. We can augment the likelihood as:
\[ p(y,\omega|f) = \frac{1}{2}\exp\left(\frac{yf}{2}-\frac{yf^2}{2}\omega\right)\operatorname{PG}(\omega|1,0).\]
Conditional distributions (Sampling)
We are interested in the full-conditionals $p(f|y,\omega)$ and $p(\omega|y,f)$:
\[\begin{align*} p(f|y,\omega) =& \mathcal{N}(f|\mu,\Sigma)\\ \Sigma =& \left(K^{-1} + \operatorname{Diagonal}(\omega)\right)^{-1}\\ \mu =& \Sigma\left(\frac{y}{2} + K^{-1}\mu_0\right)\\ p(\omega_i|y_i,f_i) \propto& \exp(-\frac{f_i^2}{2}\omega)\operatorname{PG}(\omega_i|1,0)\\ =& \operatorname{PG}(\omega_i|1,|f_i|) \end{align*}\]
Variational distributions (Variational Inference)
We define the variational distribution with a block mean-field approximation:
\[ q(f,\omega) = q(f)\prod_{i=1}^Nq(\omega_i) = \mathcal{N}(f|m,S)\prod_{i=1}^N \operatorname{PG}(\omega_i|1, c_i).\]
The optimal variational parameters are given by:
\[\begin{align*} c_i =& \sqrt{\mu_i^2 + S_{ii}},\\ S =& \left(K^{-1} + \operatorname{Diagonal}(\theta)\right)^{-1},\\ m =& \Sigma\left(\frac{y}{2} + K^{-1}\mu_0\right), \end{align*}\]
where $\theta_i = E_{q(\omega_i)}[\omega_i] = \frac{1}{2c_i}\tanh\left(\frac{c_i}{2}\right)$.
We get the ELBO as
\[ \mathcal{L} = -N\log(2) + \sum_{i=1}^N \frac{y_i m_i}{2} - \frac{m_i^2 + S_{ii}}{2}\theta_i - \operatorname{KL}(q(\omega)||p(\omega)) - \operatorname{KL}(q(f)||p(f)),\]
where
\[ \operatorname{KL}(q(\omega_i|1,c)||p(\omega_i|1,0)) = \log \cosh \left(\frac{c_i}{2}\right) - c_i^2\frac{\theta_i}{2}\]